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Abstract
The concept of “eating the rainbow” has emerged as a promising
strategy for promoting healthy food choices. This study investigates
the relationship between human and computer perceived colorful-
ness and healthiness in food images. We surveyed 25 diverse partici-
pants who rated the colorfulness and healthiness of 60 food images,
and we applied a computational colorfulness metric to these images
under three conditions: original image, masked food and dishware,
and masked food only. Results revealed a weak but significant posi-
tive association between human-rated and computer-rated colorful-
ness, and a significant positive association between human-rated
colorfulness and perceived healthiness, regardless of nutrition edu-
cation background. However, we found no significant correlation
between computer-analyzed colorfulness and human-perceived
healthiness across all image types. This discrepancy highlights
the complex relationship between food colorfulness and perceived
healthiness, emphasizing the need for more sophisticated computa-
tional models that better alignwith human perception in AI-assisted
dietary tools.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); • Applied computing → Health informatics; •
Computing methodologies → Computer vision; • Informa-
tion systems→ Multimedia information systems.
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1 Introduction
While numerous technologies and methods have been developed
to assist people in food logging and dietary analysis, they often fall
short of providing accurate, comprehensive, and beneficial guidance
[5, 7, 9]. Problems range from user-related issues like inconsistent
or inaccurate reporting to technological challenges such as the
inherent difficulty of categorizing the infinite variety of foods peo-
ple consume. Moreover, the prevalent focus on calorie counting
in computer-based dietary tracking oversimplifies the nuances of
nutritional quality and can potentially lead to counterproductive
behaviors [13].

“Eating the rainbow” is an emerging nutritional concept that
aims to simplify healthy eating by emphasizing color diversity in
food choices and encouraging increased fruit and vegetable con-
sumption [2, 11, 12, 16]. By focusing on easily observable character-
istics like color variety, this method provides a more accessible and
user-friendly approach to improving dietary habits. As we explore
more effective tools for promoting healthy eating, incorporating
the perception of colors in food as a complementary computer-
based dietary tracking method could offer a more intuitive and
user-friendly way to assess meal quality.

However, to effectively implement such color-based approaches
in dietary tools, we need to understand how human perception of
food colors aligns with computational analysis. This study seeks
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to investigate (RQ1) the relationship between human-perceived
colorfulness and computer-rated colorfulness in food images, and
(RQ2) the relationship between human-perceived healthiness and
computer-rated colorfulness in food images. To address these ques-
tions, we conducted a survey with 25 diverse participants who rated
the colorfulness and healthiness of 60 food images. We then applied
a computational colorfulness metric to these images under three
conditions: original image, masked image in which only food and
dishware are visible, and masked image of food only. We performed
statistical analysis to evaluate the associations between human-
rated colorfulness, perceived healthiness, and computer-analyzed
colorfulness. This study highlights the challenges in translating hu-
man perception into computational models, particularly regarding
the correlations between colorfulness and perceived healthiness of
food images.

2 Related Work
AI technologies have transformed dietary tracking, offering person-
alized, real-time insights through smartphone applications. Mobile
apps are playing a major role in this shift, offering features like food
identification from photos, nutritional tracking, and personalized
meal planning [21].

For example, MyFitnessPal integrates Passio’s Nutrition AI [18],
which includes features like visual food detection, OCR scanning
of nutrition labels, and barcode scanning for packaged products. It
also supports voice logging for fast, easy entry of multiple foods.
As another example, MyNetDiary uses image recognition and food
analysis algorithms to scan and analyze meals, including toppings
and sauces [23]. Both apps enable users to track micro and macronu-
trient intake and access personalized meal plans, making it easier
to manage dietary goals with AI-driven tools.

However, when dietitians and nutritionists review food pho-
tos, they often find discrepancies between AI-estimated and actual
calorie intake. These can be due to underreporting, misreporting,
selection of inappropriate food items, omission of ingredients like
cooking oils, or underestimation of portion sizes. While nutrition
professionals can easily identify these errors, AI systems that only
provide calorie estimates without additional context may fail to
establish user trust. Moreover, AI virtual assistants are often found
to fail in meeting participants’ personalized goals and needs, and
frequently misunderstand their requests [17]. Consequently, involv-
ing nutrition professionals in the development and evaluation of
these systems is crucial to ensure accuracy, meet user requirements,
and bridge the gap between AI capabilities and human expertise [4].

Instead of trying to perform complex analytics like calorie count-
ing, an alternative is to build technologies that encourage people to
reflect on the diversity of foods that they eat. One common heuristic
offered by nutritionists is to eat colorful foods, which encourages
diversity of foods and food groups.

Color plays a significant role in shaping human perception and
emotional responses. Studies have shown that color photos were
rated as more pleasant than grayscale photos when the image va-
lence was positive, and more unpleasant when the image valence
was negative [14], demonstrating the impact of color on our emo-
tional interpretation of visual stimuli. However, human perspectives
on color are subjective and influenced by factors including cultural

background, personal experiences, and psychological states [6].
These individual and cultural differences in color perception can
lead to varying interpretations and responses to colored stimuli.
Even seemingly simple tasks like assigning color labels (e.g., blue,
red, yellow) to samples from the color spectrum can result in vary-
ing levels of disagreement among human annotators [3]. For in-
stance, one study showed high consistency for colors like green
but less agreement for others such as white [24]. In the context of
food, plate colors have been shown to influence food intake. More
research is needed to understand the contrast interaction between
the colors of the plate and the served food [1].

This subjectivity and variation in how people see color presents
a major difficulty in computational models of color and colorful-
ness. Digital camera sensors typically capture three observations
per pixel corresponding to red, green, and blue (RGB) portions of
the visual spectrum. While RGB space is convenient for record-
ing and display color, other perceptually-uniform spaces such as
CIELAB [20] and CIEDE2000 [15] have been developed to better rep-
resent perceived differences between colors [22]. Building on this, S-
CIELAB [26] incorporated spatial context and texture to preprocess
images before applying the standard CIELAB [20] color formula,
further refining color perception models. Hasler and Süsstrunk [8]
proposed a colorfulness metric that correlates well with human
perception of colorfulness in natural images. They found that their
metric correlated with 95.3% of their human-annotated data. This
colorfulness metric has been widely adopted in various applications,
including image quality assessment [25], aesthetic evaluation [19],
and other subjective perceptions of images like enjoyment [14].

3 Methods
To answer the question of the relationship between human and
computational perceived colorfulness and healthiness in food im-
ages, we collected a dataset of exemplar food images. Nine members
of our lab with diverse cultural backgrounds (i.e., East Asian, South
Asian, Latino,White; bornwithin or outside the USA) photographed
their meals using a customized appmadewith Glide over 14.4 weeks.
A total of 372 food images were taken, and we randomly selected
60 for this study. Photos were collected this way using personal
smartphones to capture a more practical and accurate represen-
tation of food as it appears in everyday situations. Real-life food
images have imperfect framing and composition, as well as diverse
backgrounds and settings.

3.1 Human-rated colorfulness and perceived
healthiness

We recruited twenty-five US adult participants using Prolific to
complete a survey that we hosted on Qualtrics. Each participant
was shown the 60 food images, one-by-one. For each image, partic-
ipants rated two attributes, colorfulness and healthiness, on a scale
from 0-100 (i.e., 101-point scale used in perception studies [10]),
with 0 being least colorful or least healthy, and 100 being most col-
orful or most healthy. Following the image rating task, participants
answered additional questions designed to gather information on
their visual perception (frequency of difficulty distinguishing be-
tween similar color shades, reliance on visual cues for food quality,
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freshness, and portion size), use of technology for dietary track-
ing, nutrition-related experiences (consulting dietitian, nutrition
classes/workshops) and relevant demographic data to contextualize
the responses.

Questions on color perception and visual cues in food assess-
ment used a 5-point Likert scale ranging from “Never” to “Always.”
Questions about nutrition education and expert consultation were
presented as yes/no items. For questions about adherence to specific
diets, dietary tracking app usage, and AI assistant usage, partici-
pants were allowed to select multiple applicable options from the
provided lists. Each participant was compensated $6 for 30 minutes
of their time, and the study was approved by our institution’s IRB.

3.2 Computer-rated colorfulness
We generated computational estimates of colorfulness on the same
60 photos that we presented to the humans.We used a web interface
from Labelbox, Inc. to manually annotate the boundaries of food
and dishware leveraging the pen tool. Using the annotations, we
generated three versions of each food photo (see Figure 3): (A) the
original image, (B) a masked image in which only food and dishware
are visible (with the rest blacked out), and (C) a masked image
of food only. These three versions of food images correspond to
three different models of colorfulness assessment: (A) colorfulness
of a food image depends on all visual information in the image,
(B) colorfulness of a food image is restricted to the food and the
dishware, and (C) colorfulness of a food image is restricted to only
the food region.

Computer-rated colorfulness was calculated using the method of
Hasler and Süsstrunk [8]. For each pixel 𝑝 in an image, they compute
the difference between the red and green channels, rg𝑝 = 𝑅𝑝 −𝐺𝑝 ,

and the difference between the blue channel and the average of the
red and green channels, yb𝑝 = 0.5(𝑅𝑝+𝐺𝑝 )−𝐵𝑝 . They then compute
the mean 𝜇 and standard deviation 𝜎 of these variables, and then
compute a colorfulness score for the image, Colorfulness = 𝜎rgyb +
0.3 × 𝜇rgyb, where 𝜎rgyb =

√︃
𝜎2rg + 𝜎2yb, and 𝜇rgyb =

√︃
𝜇2rg + 𝜇2yb .

We calculated colorfulness for all three versions of food images.
For masked images, colorfulness was calculated only in the visible
regions containing food and dishware (if present).

3.3 Statistical analysis
Mean and standard deviations of human-rated and computer-rated
colorfulness, and human-rated healthiness ratings were computed
using Python with the pandas library (version 2.2.2). Linear regres-
sionwas performed using GraphPad Prism version 10.4.1 (GraphPad
Software Inc, San Diego, California, USA) to determine the relation-
ship between human-rated colorfulness and human-rated healthi-
ness, and computer-rated colorfulness and human-rated healthiness
in scatter plots. p-values < 0.05 were considered statistically signifi-
cant.

4 Results
Twenty-five participants (18-84 years old, 28% male, see Table 1)
completed the survey in an average of approximately 17.5 minutes.
The study participants represented a diverse racial and ethnic back-
ground (Table 1). The majority of participants identified as White

Table 1: Demographics andDiets of Study Participants (n=25).

Respondents

# %

Gender
Female 18 72%
Male 7 28%

Age
18-24 7 28%
25-34 8 32%
35-44 3 12%
45-54 4 16%
55 and above 3 12%

Race and Ethnicity
Asian 4 16%
Black or African American 6 24%
Hispanic, Latino, or of Spanish origin 1 4%
White or Caucasian 15 60%

Diet Type
No specific diet 15 55.6%
Vegetarian 6 22.2%
Low-carb 3 11.1%
Gluten-free 1 3.7%
Low-fat 1 3.7%
Vegan 1 3.7%

or Caucasian (n = 15, 60%). The second largest group was Black
or African American participants (n = 6, 24%), followed by Asian
participants (n = 4, 16%). The smallest group was Hispanic, Latino,
or of Spanish origin (n = 1, 4%).

Analysis of participants’ dietary preferences revealed diverse
eating habits within the sample (Table 1). Twelve (48%) partici-
pants had some form of nutrition education, either through classes,
workshops, or interactions with health experts (e.g., dietitians). The
majority of participants (55.6%, n=15) reported following no specific
diet. Among those adhering to specific diets, vegetarianism was the
most prevalent (22.2%, n=6), followed by low-carbohydrate diets
(11.1%, n=3). Other dietary patterns, including gluten-free, low-fat,
and vegan diets, were each reported by a single participant (3.7%
each).

Fifteen (60%) participants had not used any dietary tracking
apps. Among the 10 (40%) who did, 9 used MyFitnessPal, some in
combination with other apps such as Loseit!, Noom, Cronometer,
Fooducate, Lifesum, and FatSecret. Thirteen (52%) participants had
not used AI chatbots or virtual assistants for nutrition-related pur-
poses. Among the 12 (48%) who did, common uses included meal
planning, nutritional information lookup, diet advice, recipe ideas,
and motivation for healthy eating habits.

Twenty (80%) participants never experienced difficulty distin-
guishing similar color shades (e.g., blue and purple, or red and
green), while 5 (20%) participants rarely did. A majority of par-
ticipants (56%, n = 14) often or always relied on visual cues to
assess food quality and freshness, 8 (32%) participants sometimes
did, while 3 (12%) participants rarely or never did. Participants
were nearly evenly split between never/rarely (44%, n = 11) and
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often/always (36% n = 9) when using visual cues (e.g., comparing to
everyday objects) to estimate portion sizes, with 5 (20%) participants
indicating they sometimes did.

We found a positive association between human-rated colorful-
ness and perceived healthiness for all 60 food images (p < 0.001,
R2 = 0.47) (Figure 1A). Positive associations between human-rated
colorfulness and perceived healthiness were also found for both
participants who had some form of nutrition education (n = 12, p
< 0.001, R2 = 0.30; Figure 1B) and those without (n = 13, p < 0.001,
R2 = 0.58; Figure 1C). We also found a statistically significant but
weak positive association between human-rated colorfulness and
computer-rated colorfulness for original food images (p = 0.0098, R2
= 0.11) (Figure 2A), masked images in which only food and dishware
are visible (p = 0.023, R2 = 0.085; Figure 2B), and masked images of
food only (p = 0.027, R2 = 0.081; Figure 2C). However, there is no
significant association between computer-rated colorfulness and
human-rated healthiness in any of the three types: original food
image (p = 0.46, R2 = 0.0095; Figure 3A), masked images in which
only food and dishware are visible (p = 0.62, R2 = 0.0042; Figure 3B),
and masked images of food only (p = 0.82, R2 = 0.00087; Figure 3C).

Figure 4 presents a visual comparison of food images rated lowest
in colorfulness by humans and computers. The top row displays
four images that received the lowest human-rated colorfulness
scores, while the bottom row shows four images with the lowest
computer-rated colorfulness scores. Figure 5 presents a similar
visual comparison but for the images with the highest human- and
computer-rated colorfulness scores.

5 Discussion
Current dietary tracking computer technology methods have limita-
tions, and finding ways to provide users with useful and actionable
information is a challenge. Most dietary apps focus on calorie count-
ing, which may be useful to some users but harmful to others. Here,
we suggest an additional computer-based dietary tracking method
that could be complementary to calorie counting: food colors.

As rated by 25 participants (p < 0.001, R2 = 0.47) in our study,
there is a positive association between human-rated colorfulness
and perceived healthiness for all 60 food images (Figure 1A). A simi-
lar trend was observed when the data was divided into participants
who had some form of nutrition education (n = 12, p < 0.001, R2
= 0.30; Figure 1B) and those without (n = 13, p < 0.001, R2 = 0.58;
Figure 1C). Indeed, this aligns with the well-established concept of
‘eating the rainbow’ in nutrition science and public health promo-
tion, which encourages consuming a variety of fruits and vegetables
to ensure a diverse intake of nutrients. Interestingly, the associ-
ation was stronger for participants without nutrition education,
as indicated by the higher R2 value. This unexpected result may
imply that formal nutrition education introduces additional factors
in health perception beyond meal colorfulness, potentially leading
to a more nuanced evaluation of food healthiness. Regardless of
education on nutrition, eating the rainbow could provide the poten-
tial for enhanced information in nutrient-related tracking efforts,
and dietary tracking algorithms could measure easy-to-understand
metrics such as colorfulness in order to help.

However, identifying the correlation between color and health-
iness could be difficult for computers. In our study, for example,

when we asked for computer-analyzed colorfulness of these three
types of images, we found no statistically significant association
with perceived healthiness. This discrepancy highlights a challenge
in human-computer interaction within the context of food image
analysis. This gap between human perception and computer analy-
sis shows the need for more refined computational models to better
mimic human perception of food colorfulness and its association
with healthiness.

Moreover, our results from the three types of images– (A) the
original image, (B) a masked image in which only food and dishware
are visible, and (C) masked image of food only– showed a weak but
statistically significant positive association between human-rated
colorfulness and computer-rated colorfulness (p < 0.05, R2 ranging
from 0.081 to 0.11 across different image types). Specifically, these
three types of images create three different models: (A) colorfulness
of a food image depends on all visual information in the image,
(B) colorfulness of a food image is restricted to the food and the
dishware, and (C) colorfulness of a food image is restricted to only
the food region. Despite the variety of models, the association
is still considered weak. The weak correlation contrasts with the
strong positive association Hasler and Süsstrunk found with natural
images [8]. The weaker correlation in food images might indicate
that human perception of colorfulness in food is more complex or
nuanced than in general natural scenes.

The complexity was also reflected in our participants’ visual
cues for assessing food. While most participants (80%) reported no
difficulty distinguishing similar color shades, there was consider-
able variation in how they used visual cues for assessing food. The
majority relied on visual cues for assessing food quality and fresh-
ness, but were more divided on using visual cues for portion size
estimation. This discrepancy suggests that while color perception
is generally not an issue, translating this perception into practical
dietary decisions may be more challenging.

The type of food present might affect perceived colorfulness.
For instance, a salad might be expected to be more colorful than
a soup, influencing how people rate its colorfulness. Individual
and cultural associations with certain foods might also influence
how their colorfulness is perceived. Additionally, in food images,
colorfulness might be judged not just on the intensity of colors,
but also on the combination of colors present. All these challenges
could be opportunities for computing researchers and food-tracking
app developers to consider.

Our findings on the use of dietary tracking apps and AI assis-
tants for nutrition purposes highlight a significant gap in adopting
these technologies. With 60% of participants not using any dietary
tracking apps and 52% not utilizing AI chatbots or virtual assistants
for nutrition-related purposes, there is considerable potential for
growth in this area. The varied uses reported by those who do use
these technologies – from meal planning to motivation for healthy
eating habits – suggest diverse needs that future AI-assisted tools
could address.

6 Limitations and future work
This study did not fully address how humans perceive colorfulness
in food or the heuristics behind their decisions. Future work could
include designing studies to understand if the presence of specific
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Figure 1: Scatter plots of human-rated colorfulness and perceived healthiness of 60 food images, for (A) all participants (n=25),
(B) participants with some nutrition education (n=12), and (C) participants without nutrition education (n=13).

Figure 2: Comparison of human-rated and computer-rated colorfulness for 60 food images for: (A) Original food images, (B)
Masked image in which only food and dishware are visible, (C) Masked images of food only. Each point represents one food
image, with human-rated colorfulness on the x-axis and computer-rated colorfulness on the y-axis.

colors and combinations influences how colorful a food image is
rated, and if context and environmental cues affect the perceived
colorfulness of a food image. Such investigations could inform
the development of more sophisticated computational models for
assessing food images. Additionally, exploring the impact of cultural
backgrounds, dietary preferences, and nutrition knowledge on color
perception in food could provide valuable insights. These studies
would not only enhance our understanding of human perception
but also contribute to the creation of more accurate and culturally
sensitive AI-assisted dietary tools.

In conclusion, while our study demonstrates the association
between perceived colorfulness and perceived healthiness in food
images, it also reveals the complexity of this relationship and the
challenges in translating it into computational models. As we move
towards more AI-assisted dietary tools, it will be crucial to develop
systems that can bridge the gap between human perception and
computational analysis of food imagery.

Acknowledgments
This work is supported by the National Institute of Food and Agri-
culture, U.S. Department of Agriculture, under award number 2023-
67012-39483. The USDA had no role in the study design or execu-
tion.

References
[1] Asli Akyol, Aylin Ayaz, Elif Inan-Eroglu, Cansu Cetin, and Gulhan Samur. 2018.

Impact of three different plate colours on short-term satiety and energy intake: a
randomized controlled trial. Nutrition journal 17, 1 (April 2018), 46. doi:10.1186/
s12937-018-0350-1

[2] Michelle Blumfield, Hannah Mayr, Nienke De Vlieger, Kylie Abbott, Carlene
Starck, Flavia Fayet-Moore, and Skye Marshall. 2022. Should We ‘Eat a Rainbow’?
An Umbrella Review of the Health Effects of Colorful Bioactive Pigments in
Fruits and Vegetables. Molecules 27, 13 (2022). doi:10.3390/molecules27134061

[3] Jenny M. Bosten. 2022. Do You See What I See? Diversity in Human Color
Perception. Annual Review of Vision Science 8, Volume 8, 2022 (2022), 101–133.
doi:10.1146/annurev-vision-093020-112820

[4] Phawinpon Chotwanvirat, Aree Prachansuwan, Pimnapanut Sridonpai, andWan-
tanee Kriengsinyos. 2024. Advancements in Using AI for Dietary Assessment
Based on Food Images: Scoping Review. Journal of Medical Internet Research 26
(2024), e51432.

[5] Felicia Cordeiro, Daniel Epstein, Edison Thomaz, Elizabeth Bales, Arvind Ja-
gannathan, Gregory Abowd, and James Fogarty. 2015. Barriers and Nega-
tive Nudges: Exploring Challenges in Food Journaling. Proceedings of the
SIGCHI conference on human factors in computing systems CHI Conference 2015.

https://doi.org/10.1186/s12937-018-0350-1
https://doi.org/10.1186/s12937-018-0350-1
https://doi.org/10.3390/molecules27134061
https://doi.org/10.1146/annurev-vision-093020-112820


CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Khoo et al.

(A) Original Image (B) Masked image in which only (C) Masked image of food only
food and dishware are visible

Figure 3: Computer-rated colorfulness on three types of food images: (A) original images, (B) masked images in which only
food and dishware are visible, (C) masked images of food only.

A. Four food images with the lowest human-rated colorfulness scores.

B. Four food images with the lowest computer-rated colorfulness scores computed on original images.

Figure 4: Comparison of food images with lowest colorfulness scores, as judged by (A) humans and (b) computer.

doi:10.1145/2702123.2702155
[6] Andrew J. Elliot and Markus A. Maier. 2014. Color Psychology: Effects of Perceiv-

ing Color on Psychological Functioning in Humans. Annual Review of Psychology
65, Volume 65, 2014 (2014), 95–120. doi:10.1146/annurev-psych-010213-115035

[7] Quinn Grundy. 2022. A Review of the Quality and Impact of Mobile Health
Apps. Annual Review of Public Health 43, Volume 43, 2022 (2022), 117–134.
doi:10.1146/annurev-publhealth-052020-103738

[8] David Hasler and Sabine Süsstrunk. 2003. Measuring colourfulness in natural
images. In Proceedings of SPIE - The International Society for Optical Engineering
5007:87-95. https://api.semanticscholar.org/CorpusID:9176374

[9] Wael Khazen, Jean-François Jeanne, Laëtitia Demaretz, Florent Schäfer, and Guy
Fagherazzi. 2020. Rethinking the Use of Mobile Apps for Dietary Assessment in
Medical Research. J Med Internet Res 22, 6 (18 Jun 2020), e15619. doi:10.2196/15619

[10] Robin S.S. Kramer, Kay L. Ritchie, Tessa R. Flack, Michael O. Mireku, and Alex L.
Jones. 2024. The psychometrics of rating facial attractiveness using different
response scales. Perception 53, 9 (2024), 645–660. doi:10.1177/03010066241256221
arXiv:https://doi.org/10.1177/03010066241256221 PMID: 38778780.

[11] Laura König, Julia Koller, Karoline Villinger, Deborah Wahl, Katrin Ziesemer,
Harald Schupp, and Britta Renner. 2021. Investigating the Relationship be-
tween Perceived Meal Colour Variety and Food Intake across Meal Types in a
Smartphone-Based Ecological Momentary Assessment. Nutrients 13 (02 2021),
755. doi:10.3390/nu13030755

[12] Laura M. König and Britta Renner. 2018. Colourful=healthy? Exploring meal
colour variety and its relation to food consumption. Food Quality and Preference
64 (2018), 66–71. doi:10.1016/j.foodqual.2017.10.011

[13] Cheri A. Levinson, Laura Fewell, and Leigh C. Brosof. 2017. My Fitness Pal
calorie tracker usage in the eating disorders. Eating Behaviors 27 (2017), 14–16.
doi:10.1016/j.eatbeh.2017.08.003

[14] Chenyang Lin, Sabrina Mottaghi, and Ladan Shams. 2024. The effects of color and
saturation on the enjoyment of real-life images. Psychonomic bulletin & review
31, 1 (February 2024), 361—372. doi:10.3758/s13423-023-02357-4

[15] M. R. Luo, G. Cui, and B. Rigg. 2001. The development of
the CIE 2000 colour-difference formula: CIEDE2000. Color Re-
search & Application 26, 5 (2001), 340–350. doi:10.1002/col.1049

https://doi.org/10.1145/2702123.2702155
https://doi.org/10.1146/annurev-psych-010213-115035
https://doi.org/10.1146/annurev-publhealth-052020-103738
https://api.semanticscholar.org/CorpusID:9176374
https://doi.org/10.2196/15619
https://doi.org/10.1177/03010066241256221
https://arxiv.org/abs/https://doi.org/10.1177/03010066241256221
https://doi.org/10.3390/nu13030755
https://doi.org/10.1016/j.foodqual.2017.10.011
https://doi.org/10.1016/j.eatbeh.2017.08.003
https://doi.org/10.3758/s13423-023-02357-4
https://doi.org/10.1002/col.1049


Bridging Human Intuition and AI in Colorful Food Assessment CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

A. Four food images with the highest human-rated colorfulness scores.

B. Four food images with the highest computer-rated colorfulness scores computed on original images.
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